The Effects of Nutrient Imbalances and Temperature on the Biomass Stoichiometry of Freshwater Bacteria
نویسندگان
چکیده
Two contemporary effects of humans on aquatic ecosystems are increasing temperatures and increasing nutrient concentrations from fertilizers. The response of organisms to these perturbations has important implications for ecosystem processes. We examined the effects of phosphorus (P) supply and temperature on organismal carbon, nitrogen and phosphorus (C, N, and P) content, cell size and allocation into internal P pools in three strains of recently isolated bacteria (Agrobacterium sp., Flavobacterium sp., and Arthrobacter sp.). We manipulated resource C:P in chemostats and also manipulated temperatures from 10 to 30°C. Dilution rates were maintained for all the strains at ~25% of their temperature-specific maximum growth rate to simulate low growth rates in natural systems. Under these conditions, there were large effects of resource stoichiometry and temperature on biomass stoichiometry, element quotas, and cell size. Each strain was smaller when C-limited and larger when P-limited. Temperature had weak effects on morphology, little effect on C quotas, no effect on N quotas and biomass C:N, but had strong effects on P quotas, biomass N:P and C:P, and RNA. RNA content per cell increased with increasing temperature at most C:P supply ratios, but was more strongly affected by resource stoichiometry than temperature. Because we used a uniform relative growth rate across temperatures, these findings mean that there are important nutrient and temperature affects on biomass composition and stoichiometry that are independent of growth rate. Changes in biomass stoichiometry with temperature were greatest at low P availability, suggesting tighter coupling between temperature and biomass stoichiometry in oligotrophic ecosystems than in eutrophic systems. Because the C:P stoichiometry of biomass affects how bacteria assimilate and remineralize C, increased P availability could disrupt a negative feedback between biomass stoichiometry and C availability.
منابع مشابه
Freshwater Bacteria are Stoichiometrically Flexible with a Nutrient Composition Similar to Seston
Although aquatic bacteria are assumed to be nutrient-rich, they out-compete other foodweb osmotrophs for nitrogen (N) and phosphorus (P) an apparent contradiction to resource ratio theory. This paradox could be resolved if aquatic bacteria were demonstrated to be nutrient-poor relative other portions of the planktonic food web. In a survey of >120 lakes in the upper Midwest of the USA, the nutr...
متن کاملVariable Stoichiometry and Homeostatic Regulation of Bacterial Biomass Elemental Composition
Prokaryotic heterotrophs (hereafter, bacteria) represent a large proportion of global biomass, and therefore bacterial biomass stoichiometry likely exerts control on global phosphorus (P), carbon (C), and nitrogen cycling and primary productivity. In this study we grew recently isolated freshwater heterotrophic bacteria across an ecologically relevant range of resource C:P ratios (organic C to ...
متن کاملWarming alters coupled carbon and nutrient cycles in experimental streams.
Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital matter) act as biogeochemical hotspots by controlling important fluxes of ener...
متن کاملEcological stoichiometry in freshwater benthic systems: recent progress and perspectives
1. Ecological stoichiometry deals with the mass balance of multiple key elements [e.g. carbon (C), nitrogen (N), phosphorus (P)] in ecological systems. This conceptual framework, largely developed in the pelagic zone of lakes, has been successfully applied to topics ranging from population dynamics to biogeochemical cycling. More recently, an explicit stoichiometric approach has also been used ...
متن کاملResearch Article: Effect of feeding level on water quality and plankton community structure in the yellow catfish (Pelteobagrus fulvidraco) rearing enclosure ecosystem
Four feeding levels (40%, 60%, 80% and 100% of satiation) were designed as the different treatment groups to assess its effects on water quality and plankton community structure in the yellow catfish rearing enclosure ecosystem. The results showed that the weight gain and specific growth rate decreased significantly as the feeding level decreased. The soluble nutrients (except for NO2-N) concen...
متن کامل